张晓,男,广东高州人,博士,我校澳门3044永利助理教授。本科和研究生就读于华南理工大学,博士毕业于澳门大学,师从著名学者、IEEE Fellow祝雷教授。主要研究方向为微带贴片天线,终端天线,圆极化天线,反射阵,特征模理论等。截至2022年10月,共发表篇SCI论文超过50篇,包含中科院一区/二区论文近30篇,其中,在天线类顶级期刊IEEE Trans. Antennas Propag. 上以第一作者身份发表论文10篇。截至2022年10,google scholar引用累计1265次,h指数17,h10指数28。2018年,获澳门科技奖之研究生科研奖,主持国家自然科学基金一项,同时被评为深圳市海外高层次人才(孔雀计划C类);2019年入选全球前2%科学家。
张晓老师坚持产学研结合的研究特色,在深耕天线理论的同时,将理论与实践结合,不遗余力地推进成果的应用转化。近年来,课题组与大疆、小天才、电目科技、芯联创展、京信通信等知名科技企业合作,签订了横向合作项目多项,转让/许可专利6项。多项成果已成功应用落地,获得了巨大的社会经济效益。其中,课题组首创地提出的耦合圆极化天线技术,成功应用于广东小天才科技有限公司的多款旗舰产品,截至2022年9月出货量累计500万台,产值高达15亿。同时,该项目被合作公司内部评为“近十年来最成功的产学研项目”!
张晓老师热爱教学,自2018年以来担任了《数据采集与处理》,《高频电路》,《微波技术与天线》,《模拟电路》等本科课程的教学工作,在教学上倾心付出,获得了学生的一致好评,绝大部分课程的教学评价排在前10%左右或以内。其《高频电路》授课视频在B站上获得全国各个高校学生的青睐,播放热度长期位于知识区前2%。2018年参加我校青年教师教学能力培养薪火计划,获评优秀;在2018-2019及2020-2021学年度考核中,获评优秀; 2020年获评我校教学单项奖之优秀本科课程奖。2018年至2022年,参与指导毕业研究生5名,博士生2名,其中,2人获评优秀毕业生。
教育经历:
2018.03-至今: 我校澳门3044永利,助理教授
2014.08-2018.09:澳门大学,电机及电脑工程专业,博士
2011.09-2014.07:华南理工大学,通信与信息系统专业,硕士
2007.09-2011.07: 华南理工大学,信息工程专业,学士
研究方向:微带贴片天线,终端天线,圆极化天线,反射阵,特征模理论等;
应用领域:5G通信MIMO系统,车联网,物联网,卫星通信,移动终端,智能可穿戴设备等。
主持项目:
1. 国家自然科学基金青年项目,“基于加载技术的高增益贴片天线的研究”,批准号:****1298,2019.01-2021.12,项目负责人。
2. 深圳市基础研究面上项目,“用于5G室分系统深度覆盖的高阶谐振平面天线的研究”,2020.06-2023.05,项目号:JCYJ20190****1****1853,项目负责人。
3. 横向项目,“电话手表GPS圆极化天线及其产品化应用的研究”,广东小天才科技有限公司,2020.06至今
4. 横向项目,“毫米波封装天线测试技术研究”,京信通信系统(中国)有限公司,2020.10至今。
部分奖项:
2020. 04 我校教学单项奖之优秀本科课程奖
2019年度全球前2%科学家
2019.03 深圳市南山区“领航人才”
2018.09 深圳市高层次人才C类
2018.10 澳门研究生研发科研奖
2010.10 广东大学生设计竞赛一等奖
2009.12 全国大学生电子设计竞赛二等奖
办公室:致信楼N305
E-mail:xiao.zhang@szu.edu.cn
目前本人课题组依托 “广东省移动终端微波毫米波天线工程技术研究中心”和“粤港大数据图像和通信应用联合实验室”两个省级研究平台,设备条件一流,经费充足,欢迎推免生及考研学生报读本课题组,实验室具有产出的科研成果能够大大提升未来出国深造或应聘工作的竞争力。
主要代表作:
[1] X. Zhang, Z. -P. Zhong, Q. -Y. Zeng, Q. -S. Wu, L. Zhu and T. Yuan, “Principle and unified design of circularly polarized quadruple inverted-F antenna with miniaturized size and enhanced front-to-back ratio,” IEEE Trans. Antennas Propag., vol. 70, no. 9, pp. 7735-7744, Sept. 2022. (中科院一区,顶刊)
[2] X. Zhang, Q.-Y. Zeng, Z.-P. Zhong, Q.-S. Wu, L. Zhu, T. Yuan, Q.-H. Jiang, and B. Mei., “Analysis and design of stable-performance circularly-polarized antennas based on coupled radiators for smart watches,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5312-5323, Jul. 2022. (中科院一区,顶刊)
[3] X. Zhang, K. -D. Hong, L. Zhu, X. -K. Bi and T. Yuan, “Wideband differentially fed patch antennas under dual high-order modes for stable high gain," IEEE Trans. Antennas Propag., vol. 69, no. 1, pp. 508-513, Jan. 2021. (中科院一区,顶刊)
[4] X. Zhang and L. Zhu, “Patch antennas with loading of a pair of shorting pins toward flexible impedance matching and low cross-polarization,” IEEE Trans. Antennas Propag., vol. 64, no. 4, pp. 1226-1233, Apr. 2016. (中科院一区,顶刊)
[5] X. Zhang and L. Zhu, “Gain-enhanced patch antennas with loading of shorting pins,” IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3310-3318, Aug. 2016. (中科院一区,顶刊)
[6] X. Zhang and L. Zhu, “High-gain circularly polarized microstrip patch antenna with loading of shorting pins,” IEEE Trans. Antennas Propag., vol. 64, no. 6, pp. 2172-2178, Jun. 2016. (中科院一区,顶刊)
[7] X. Zhang, L. Zhu, and N.-W. Liu, “Pin-loaded circularly-polarized patch antennas with wide 3-dB axial ratio beamwidth,” IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 521-528, Feb. 2017. (中科院二区,IF=4.130,the most popular paper of AP in Feb. 2017. (中科院一区,顶刊)
[8] X. Zhang and L. Zhu, “Gain-enhanced patch antenna without enlarged size via loading of slot and shorting pins,” IEEE Trans. Antennas Propag., vol. 65, no. 11, pp. 5702-5709, Nov. 2017. (中科院一区,顶刊)
[9] X. Zhang and L. Zhu, “Side-lobe-reduced and gain-enhanced square patch antennas with adjustable beamwidth under TM03 mode operation,” IEEE Trans. Antennas Propag., vol. 66, no. 4, pp. 1704-1713, Apr. 2018. (中科院一区,顶刊)
[10] X. Zhang and L. Zhu, “Dual-band high-gain differentially fed circular patch antenna working in TM11 and TM12 modes,” IEEE Trans. Antennas Propag., vol. 66. no. 6, pp. 3160-3165, Jun. 2018. (中科院一区,顶刊)
[11] X. Zhang, T. -Y. Tan, Q. -S. Wu, L. Zhu, S. Zhong and T. Yuan, “Pin-Loaded Patch Antenna Fed With a Dual-Mode SIW Resonator for Bandwidth Enhancement and Stable High Gain,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 2, pp. 279-283, Feb. 2021. (中科院二区)
[12] X. Zhang, Q. S. Wu, L. Zhu, G.-L. Huang, and T. Yuan, “Resonator-fed wideband and high-gain patch antenna with enhanced selectivity and reduced cross-polarization” IEEE Access, vol. 7, pp. 49918-49927, Apr. 2019. (中科院二区)
[13] X. Zhang, L. Zhu, N.-W. Liu, and D.-P. Xie, “Pin-loaded circularly-polarised patch antenna with sharpened gain roll-off rate and widened 3-dB axial ratio beamwidth,” IET Microw., Antennas Propag., vol. 12, no. 8, pp. 1247-1254, Aug. 2018.
[14] Q. -S. Wu, X. Zhang*, L. Zhu, J. Wang, G. Zhang and C. -B. Guo, “A Single-layer dual-band dual-sense circularly-polarized patch antenna array with small frequency ratio,” IEEE Trans. Antennas Propag., vol. 70, no. 4, pp. 2668-2675, Apr. 2022. (中科院一区,顶刊)
[15] K. -D. Hong, X. Zhang*, and T. Yuan, "Closely-spaced half-ring patch antenna pair with enhanced isolation, reduced cross-polarization, and consistent beam,” IEEE Antennas Wirel. Propag. Lett., 2022, early access, doi: 10.1109/LAWP.2022.3212195.
[16] K. -D. Hong, X. Chen, X. Zhang*, L. Zhu and T. Yuan, “A slot-loaded high-gain circular patch antenna with reconfigurable orthogonal polarizations and low cross polarization,” IEEE Antennas Wirel. Propag. Lett., vol. 21, no. 3, pp. 511-515, Mar. 2022. (中科院二区)
[17] K. -D. Hong, X. Zhang*, L. Zhu, X. -K. Bi, Z. Chen and T. Yuan, “A self-balanced wideband patch antenna fed with a U-resonator for stable radiation performance,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 4, pp. 661-665, April 2020. (中科院二区)
[18] X. -K. Bi, X. Zhang*, S. -W. Wong, S. -H. Guo and T. Yuan, “Reconfigurable-bandwidth DWB BPF with fixed operation frequency and controllable stopband,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 141-145, Jan. 2021.
[19] X. -K. Bi, X. Zhang*, S. -W. Wong, T. Yuan and S. -H. Guo, “Design of equal-ripple dual-wideband bandpass filter with minimum design parameters based on cross-shaped resonator,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1780-1784, Oct. 2020.
[20] X. -K. Bi, X. Zhang, S. -W. Wong, S. -H. Guo and T. Yuan, “Synthesis Design of Chebyshev Wideband Band-Pass Filters With Independently Reconfigurable Lower Passband Edge,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 2948-2952, Dec. 2020.
[21] B. Liu, S. -W. Wong, K. -W. Tam, X. Zhang, and Y. Li, “Multifunctional orbital angular momentum generator with high-gain low-profile broadband and programmable characteristics,” IEEE Trans. Antennas Propag., 70, no. 2, pp. 1068-1076, Feb. 2022. (中科院一区,顶刊)
[22] D.-P. Xie, L. Zhu, and X. Zhang, “An EH0-mode microstrip leaky-wave antenna with periodical loading of shorting pins,” IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3419-3426, Jul. 2017. (中科院一区,顶刊)
[23] Q. –S. Wu, X. Zhang, and L. Zhu, “A wideband circularly polarized patch antenna with enhanced axial ratio bandwidth via co-design of feeding network,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 4996-5003, Oct. 2018. (中科院一区,顶刊)
[24] Q.-S. Wu, X. Zhang, and Lei Zhu, “Co-design of a Wideband Circularly Polarized Filtering Patch Antenna with Three Minima in Axial Ratio Response,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5022-5030, Oct. 2018. (中科院一区,顶刊)
[25] X. K. Bi, X. Zhang, G.-L. Huang, and T. Yuan, “Compact microstrip NWB/DWB BPFs with controllable isolation bandwidth for interference rejection,” IEEE Access, vol. 7, pp. 49169-49176, 2019. (中科院二区)
[26] X. K. Bi, G.-L. Huang, X. Zhang, and T. Yuan, “Design of wideband and high-gain slotline antenna using multi-mode radiator,” IEEE Access, vol. 7, pp. 54252-54260, 2019. (中科院二区)
[27] N.-W. Liu, L. Zhu, W.-W. Choi, and X. Zhang, “A low-profile aperture-coupled microstrip antenna with enhanced bandwidth under dual-resonance,” IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1055-1062, Mar. 2017. (中科院一区,顶刊)
[28] N.-W. Liu, L. Zhu, W.-W. Choi, X. Zhang, “Wideband shorted patch antenna under radiation of dual resonant modes,” IEEE Trans. Antennas Propag., vol. 65, no. 6, pp. 2789-2796, Jun. 2017. (中科院一区,顶刊)
[29] N.-W. Liu, L. Zhu, W.-W. Choi, and X. Zhang, “A low-profile differential-fed patch antenna with bandwidth enhancement and sidelobe reduction under operation of TM10 and TM12 modes”, IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4854-4859, Sep. 2018. (中科院一区,顶刊)
[30] L.-P. Feng, L. Zhu, S. Zhang, and X. Zhang, “Compact Chebyshev Differential-Mode Bandpass Filter on/4 CPS Resonator With Intrinsic Common-Mode Rejection,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4047-4056, Sep. 2018. (中科院一区,顶刊)
[31] G. L. Huang, C. Z. Han, W. Xu, T. Yuan, and X. Zhang, “A compact 16-way high-power combiner implemented via 3-D metal printing technique for advanced radio-frequency electronics system applications,” IEEE Trans. Ind. Electron., vol. 66, no. 6, Jun. 2019. (中科院一区,顶刊)
专利:
[1] 中国发明专利:朱玉建,张晓,谭挺艳,毕晓坤,李津,袁涛;一种高隔离度的双极化腔体辐射单元,ZL202010115407.4,授权,2022.05;
[2] 中国发明专利:张晓,张聪,一种稳覆盖的超高频RFID平面近场天线ZL202110982262.2,中国发明专利,授权,2021.11;
[3] 中国发明专利:张晓,李国雄,袁涛;一种具有一致辐射方向图且增益提高的宽带耦合贴片天线,ZL202111188709.5,授权,2022.02;
[4] 中国发明专利:张晓,许志泳,张聪,袁涛;一种具有陡峭边沿选择特性的近场天线ZL202111498723.5,授权,2022.04;
[5] 中国发明专利:毕晓坤,张晓,谭挺艳,袁涛;一种双通带带宽可调的可重构滤波器201911027917.X,授权,2020.12;
[6] 中国发明专利:李国雄,张晓;一种具有双波束方向图的宽带圆极化贴片天线, CN****10157025.2,授权;
[7] 中国发明专利:钟增培,张晓,卢城知,袁涛;一种双频可展宽波束宽度的贴片天线, CN****11443575.2,授权;
[8] 中国发明专利:谭挺艳,张晓,袁涛;一种方向图可重构的贴片天线CN****10350438.8,授权;
[9] 中国发明专利:毕晓坤,张晓,谭挺艳,袁涛;一种双通带带宽可调的可重构滤波器,ZL****11027917.X,授权;
[10] 中国发明专利:朱玉建,张晓,谭挺艳,毕晓坤,李津,袁涛;一种高隔离度的双极化腔体辐射单元,CN****10115407.4,授权;
[11] 中国发明专利:洪凯东,张晓,袁涛; 一种具有稳定高增益的宽带贴片天线, CN****10494149.5,授权;
[12] 中国发明专利:洪凯东,张晓,黄冠龙,袁涛,吴琼森,祝雷;一种具有宽带及滤波器特性的高增益贴片天线,,CN****11140343.2,授权;
[13] 中国发明专利:廖淑敏,张晓,黄冠龙,袁涛,吴琼森,祝雷;;一种具有低剖面的宽带高增益贴片天线, CN****11141757.7,授权;
[14] 中国发明专利:张晓,洪凯东,袁涛; 一种方向图可重构的高增益贴片天线,****10403259.0,授权;
[15] 中国发明专利:张晓,李国雄,袁涛;一种具有一致辐射方向图且增益提高的宽带耦合贴片天线, ****11188709.5,授权;